I. DATOS DEL PROGRAMA Y LA ASIGNATURA				
NOMBRE	MAESTRÍA	A EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS		
DEL		· · · · · · · · · · · · · · · · · · ·		
PROGRAMA	RECURSOS	S NATURALES		
NOMBRE DE				
LA	ANÁLISIS B	IOMATEMÁTICO Y DISEÑO DE EXPERIMENTOS		
ASIGNATURA				
CLAVE	9430			

TIPO DE ASIGNATURA	OBLIGATORIA	OPTATIVA	Х

TIPO DE ASIGNATURA	TEÓRICA	PRÁCTICA	TEÓRICA-PRÁCTICA	Х
--------------------	---------	----------	------------------	---

NÚMERO DE HORAS	48
NÚMERO DE CRÉDITOS*	6
TRIMESTRE EN EL QUE SE IMPARTIRÁ	Enero - abril
FECHA DE ÚLTIMA ACTUALIZACIÓN	28/10/2025

^{*} Cada crédito equivale a ocho horas de clases teóricas, 16 horas de clases prácticas o 30 horas de trabajo de investigación.

RESPONSABLE	
DE LA	Dr. Enrique Troyo Diéguez
ASIGNATURA	
SUPLENTE DE LA ASIGNATURA	Dr. Bernardo Murillo Amador
PROFESORES PARTICIPANTES	Dr. Héctor Cirilo Fraga Palomino

II. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL

Proporcionar al alumno los conocimientos y métodos actualizados sobre Análisis Biomatemático y Diseño de Experimentos, como una de las áreas importantes de aplicación de la estadística experimental en las ciencias biológicas, motivandolo a la constante actualización y adaptación de dichos métodos con aplicaciones en computadora, de acuerdo con el avance la ciencia estadística.

Objetivos específicos:

- 1. Inferir los conceptos fundamentales involucrados en el Análisis Biomatemático y Diseño de Experimentos.
- 2. Conocer la nomenclatura y las bases teóricas para la organización de experimentos factoriales y la selección de tratamientos.
- 3. Comprender las bases teóricas e integrar los conocimientos sobre los

métodos de análisis de varianza en experimentos.

- 4. Aprender los conceptos y metodología general de métodos multivariados.
- 5. Aplicar los diseños de experimentos más comunes en ciencias naturales para la resolución de problemas.

B) DESCRIPCIÓN DEL CONTENIDO	
TEMAS Y SUBTEMAS	TIEMPO
EMA I. Conceptos fundamentales del Análisis Biomatemático y Diseño de	(Horas)
Experimentos	
L.1. Naturaleza de los datos biológicos.	8
1.2. Nomenclatura y conceptos; universo, población y muestreo.	
1.3. Organización y diseño de experimentos.	
FEMA II. Fundamentos y supuestos del análisis de varianza	
2.1. Fundamentos matemáticos del análisis de varianza.	10
2.2. Arreglo combinatorio.	10
2.3. Arreglo en parcelas divididas y subdivididas.	
UNIDAD III. Diseño completamente al azar y de bloques completos al azar	
3.1. Formulación de hipótesis	8
3.2. ANVA de una y dos vías.	
UNIDAD IV. Diseño en cuadro latino y diseño LATICE	
4.1. Formulación de hipótesis	6
4.2. Aplicaciones y ejecución de ANVA.	
UNIDAD V. Separación y comparación de medias	
onidad v. Separación y comparación de medias	
5.1. Transformaciones	6
5.2. Construcción de gráficas y presentación de resultados.	
JNIDAD VI. Análisis multivariado; Análisis de componentes principales y aplicaciones en computadora.	
5.1. Codificación de variables y archivos para análisis ultivariado.	10
6.2. Ejecución de programas de análisis multivariado en computadora.	
TOTAL	48
	1

III. BIBLIOGRAFÍA

Box, G. y Hunter, W. Statistics for experimenters. John Wiley and Sons, New York. 1978. Cochran, W. G. y Cox, G. M. Diseños experimentales. Ed. Trillas, México. 1978. 661 p.

Little, T. M. y Jackson-Hills, F. Métodos estadísticos para la investigación en agricultura. 1979.

Manly, Bryan FJ, Jorge A. Navarro Alberto, and Ken Gerow. 2024. Multivariate statistical methods: a primer. Chapman and Hall/CRC.

Mertler, C. A., Vannatta, R. A., LaVenia, K. N. 2021. Advanced and multivariate statistical methods: Practical application and interpretation. Routledge.

Sokal, R. R. y Rohlf, J. 1985. Biometry. W. H. Freeman and Co, New York, 2nd. edition. Steel, R. y Torrie, J. Bioestadística, principios y procedimientos. Ed. McGraw-Hill.

IV. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

Actividades de aprendizaje

Se destinarán 45 horas para cubrir la parte teórica del curso, de ellas, 32 horas serán empleadas mediante impartición de cátedra y 13 horas para realizar discusión de artículos científicos de actualidad relacionados con el diseño experimental.

Las 15 horas de prácticas serán cubiertas mediante la realización de ejercicios y ejemplos en computadora.

Evaluación

Se evaluará asignando en escala de cero a 100:

60 puntos: promedio de tres exámenes (dos temas por examen).

40 puntos: calificación de trabajos y solución de problemas realizados en computadora.

