CONTENTS

About the Author iii

Figures and Tables ix

Acknowledgments xiii

Foreword xv

1. INTRODUCTION 1

- 1.1 The Sea Maid's Music—An Ode to Pattern Recognition 4
- 1.2 Fisheries Science 8
- 1.3 Finding Our Way 12

2. TEASERS 15

- 2.1 The Pelagic Reproductive Strategy 15
- 2.2 Attraction to Floating Objects 16
- 2.3 The Huge Pelagic Fish Populations of the Peru Current 18
- 2.4 Density-Dependent Growth 19
- 2.5 Pacific Albacore Migration 20
- 2.6 Bluefin Tuna and Surface Fronts 20
- 2.7 Migrations of Short-Finned Squid 21
- 2.8 The Distinct Haddock Populations of Rockall and Faeroe Banks 22
- 2.9 The Blue Crab of Chesapeake Bay 22
- 2.10 Synchronous Low-Frequency "Regime" Rhythms 24

3. BEYOND EXPERIENCE 26

- 3.1 Very Thin "Soup" 26
- 3.2 Of Bathtub Oceans and Giant Guppy Tanks 28
- 3.3 Different Worlds—Different Rules 29
- 3.4 An Alternative Currency 30
- 3.5 Strategies for the Energy Battle 31
- 3.6 Adjusting to a Rotating Frame of Reference 33

4. INTERMITTENCY AND RISK 38

- 4.1 "I Be Here—But I Disappear" 38
- 4.2 High-Risk Strategies and Life-Cycle Weak Links 39
- 4.3 "Wasp-Waist" Ecosystems 40

5. ENRICHMENT PROCESSES (Enriching the "Broth") 43

- 5.1 Seasonal Overturn and Tidal Mixing 44
- 5.2 Coastal Upwelling 44

- 5.3 Shelf-Break Upwelling 47
- 5.4 Equatorial Upwelling 47
- 5.5 Wind Stress Curl 48
- 5.6 Vortex-Driven Upwelling 50
- 5.7 Upwelling Through a Stationary Thermocline 54
- 5.8 Coastal Runoff 56

6. CONCENTRATION PROCESSES (Thickening the "Soup") 57

- 6.1 The Action Is at the Interfaces 57
- 6.2 Surface Fronts 59
- 6.3 Attraction to Drifting Objects (Revisited) 60
- 6.4 River Plumes 62
- 6.5 Intersections of Oceanic Water Masses 64
- 6.6 Anticyclonic Wind Stress Curl 65
- 6.7 Vorticity-Related Surface Convergence 66
- 6.8 Microscale Stability 68
- 6.9 Beneficial Microscale Turbulence 68
- 6.10 Langmuir Circulations 69

7. TRANSPORT AND RETENTION (Getting "Home") 71

- 7.1 Fish Larvae Are Not Drift Bottles 72
- 7.2 The Stratified Taylor Column 73
- 7.3 Dooley's Hypothesis 76
- 7.4 Shelf-Sea Fronts 77
- 7.5 Surface Wind Drift 79
- 7.6 Vertical Geostrophic Shears 83
- 7.7 Bottom Boundary Layers 84
- 7.8 Surface Wave Transport 86
- 7.9 Slicks Coupled to Internal Waves 88
- 7.10 The Geographical Scale of Recruitment 90

8. LONG-DISTANCE CONNECTIONS 92

- 8.1 El Niño 93
- 8.2 Waves of Change 96
 - 8.2.1 Rossby Waves **98**
 - 8.2.2 Coastal Kelvin Waves 101
 - 8.2.3 Equatorial Kelvin Waves 104
- 8.3 Atmospheric Connections 106
 - 8.3.1 Walker Circulation and ENSO 106
 - 8.3.2 Teleconnections to High-Latitude Oceans 110

- 8.3.3 "El Niño North" 113
- 8.4 What Pulls the ENSO Trigger? 114
- 8.5 Atlantic El Niño 116
- 8.6 Poleward Displacement of Eastern Ocean Coastal Upwelling 117
- 8.7 The "Spring-Loaded" Coastward Flow Response to Relaxation of Upwelling-Favorable Wind 121

9. "BIO" SIZE SCALES: BODY LENGTH AND SCHOOL DIAMETER 126

- 9.1 School-Scale Effects on Nutrition and Growth 126
- 9.2 Effect of Size-Dependent Predation 129
- 9.3 Chain-Forming Dinoflagellates in the Spanish Rías 131

10. REPRODUCTIVE ACTIVITY HAS A TIME AND PLACE 135

- 10.1 The California Current 136
- 10.2 The Benguela Current Region—Getting Around the Problem 143
- 10.3 Southeast Brazil—A "Mirror Image" Configuration 146
- 10.4 Brazil-Uruguay-Argentina—The Adaptable Anchovy 147
- 10.5 The Peru Current—the "Numero Uno" of Pelagic Habitats 153
 - 10.5.1 Latitude-Dependent Ocean Dynamics 153

11. WINDOWS OF OPPORTUNITY 159

- 11.1 Correlative Approaches (or "At Least, Let's Not Kid Ourselves") 161
 - 11.1.1 Inflated Degrees of Freedom 161
 - 11.1.2 Problems with Significance Criteria 165
 - 11.1.3 Are Empirical Findings of Any Use? 166
 - 11.1.4 Patterns in Empirical Results 167
- 11.2 Lasker Windows 168
- 11.3 The SARP "Within-Year Exercise" 169
- 11.4 Recruitment Independent of Parental Stock Size? (or "Let's Not Kid Ourselves," Part 2) 172
- 11.5 The "Optimal Environmental Window" 174

12. HERE TODAY, GONE TOMORROW? 178

- 12.1 The Black Sea—Trouble at the Wasp Waist 178
- 12.2 The Antarctic--Krill vs. Salps? 180
- 12.3 Sardines and Anchovies—Alternating Regimes 182

- 12.3.1 Apparent Global Synchrony 184
- 12.3.2 Is It Temperature? 187
- 12.3.3 Regime Change in the Gulf of California 190
- 12.4 Tropical Analogs—Sardinellas, and So On 191
 - 12.4.1 The Brazilian Bight—Tropical/Temperate Species
 Mix 191
 - 12.4.2 The Guinea Current—Triggerfish and Other Wonders 193
 - 12.4.3 The Indian Oil Sardine—Newfound Reliability 195

13. WHAT'S GOING ON? 197

- 13.1 North Pacific Albacore (The Grandest Tour) 197
- 13.2 Bluefin Tuna and the Loop Current Front (Here, and Only Here) 203
- 13.3 Illex Squid Migrations (An Invertebrate "Donner Party"?) 205
- 13.4 The Prey Fights Back 210
- 13.5 The School as a Counteroffensive Weapon 213
- 13.6 Sticking with What Works 215
- 13.7 The School as a Low-Pass Filter 218
 - 13.7.1 Hypothetical Application to the Japanese Sardine 219
- 13.8 Global Warming—Coastal Cooling 223
- 13.9 A Sub-El Niño Frequency 227
 - 13.9.1 Again, Is It Temperature? 236
 - 13.9.2 Sardines vs. Anchovies 237
- 13.10 A Scenario for the Subarctic North Pacific 238

14. WHAT HAPPENS NEXT? 244

- 14.1 The Global Experiment 244
- 14.2 "Rosy" or "Bleak"? (Gulf of Guinea Example) 248
- 14.3 Fisheries Science 250
 - 14.3.1 A Bright Note 253
- 14.5 The Sea Maid's Music 254

REFERENCES 257

APPENDIX: BRIEF MATHEMATICAL TREATMENT 287

The Geostrophic and Ekman Approximations 287
Vorticity Balance in the Near-Surface Flow Field 289

INDEX 291